

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Prism 2.0: *Preliminary* Insights from EPRI's Regional Model

Victor Niemeyer, Ph.D. Technical Executive, Environment

South Carolina PURCEAC Meeting February 25, 2011

EPRI's Prism / MERGE Analysis

Roadmap for a low-carbon future...

- Detailed analysis of the pathway to reducing CO₂ emissions across the electricity sector
- Provided guidance on the needed generation mix to slow, stop and reverse CO₂ emissions
- Cited in numerous national and international publications
- Basis for new EPRI programs and demonstration projects

Electric Sector CO₂ Reductions: What is possible?

Context

The EPRI Prism IS ...

• A bottom-up estimate of GHG reduction potential (if we accomplish *X*, we can reduce emissions by *Y*)

The EPRI Prism is **NOT** ...

- A rigorous unit-by-unit assessment
- A detailed economic analysis
- A climate policy recommendation

Intended to start conversations about technology, not end them!

Options to Reduce Electric Sector Emissions

- Efficiency
 - End-Use Efficiency
 - T&D Loss Reduction
- Renewables
 - Central Station (Wind, Solar CSP, Biomass, Geothermal)
 - Distributed (Solar PV)
- Nuclear
 - Existing Plant Life Extension
 - New Advanced Reactors
- Fossil Plant Efficiency
 - Heat Rate Improvements for Existing Coal
 - High Efficiency New Coal and New Gas
- Carbon Capture and Storage
 - Existing Coal Retrofits
 - All New Coal + NGCC Post-2020
- Expanded Use
 - PHEVs
 - Electrotechnologies

EPRI – INL Roadmap

EPRI Analysis and Initiatives

EPRI – CURC Roadmap

EPRI CoalFleet; CCS Demos

EPRI RPS Analysis

EPRI Analysis

2009 Prism Technology Targets

Technology	EIA AEO Base Case	EPRI Prism Target
Efficiency	Load Growth ~ +0.95%/yr	Load Growth ~ +0.47%/yr
T&D Efficiency	None	20% Reduction in T&D Losses by 2030
Renewables	60 GWe by 2030	135 GWe by 2030
Nuclear	12.5 GWe New Build by 2030	No Retirements; 64 GWe New Build by 2030
Fossil Efficiency	40% New Coal, 54% New NGCCs by 2030	+3% Efficiency for 75 GWe Existing Fleet 49% New Coal; 70% New NGCCs by 2030
CCS	None	90% Capture for All New Coal + NGCC After 2020 Retrofits for 60 GWe Existing Fleet
Electric Transportation	None	PEVs by 2010; 40% New Vehicle Share by 2025 3x Current Non-Road Use by 2030
Electro- technologies	None	Replace ~4.5% Direct Fossil Use by 2030

CO₂ Reductions ... Technical Potential*

Key Insights from Prism/MERGE

- The technical potential exists for the U.S. electricity sector to significantly reduce its CO₂ emissions over the next several decades.
- Low-carbon electricity technologies can drive growth in electricity demand even as CO₂ emissions are reduced.
- A low-cost, low-carbon portfolio of electricity technologies can significantly reduce the costs of climate policy.
- No one technology will be a silver bullet a portfolio of technologies will be needed.
- Much of the needed technology isn't available yet substantial R&D, demonstration is required.

Why Prism 2.0?

- New Regional Economic Model
- Improved treatment of renewable energy
 - High-resolution wind and solar resource data
 - Full treatment of integration costs of variable generation
 - Integrated biomass model with resource competition
- Expanded demand-side detail by region and technology
 - Energy efficiency, demand response, and distributed resources
 - Electric transportation and electro-technologies
- Full complement of environmental regulations

The Next Generation of EPRI Analysis

Leveraging EPRI Technology and Expertise

EPRI Technical Staff **Provide Critical Inputs** ETAC Generation Nuclear Environment PDU

Regional Model

12 Census/State Regions

- Electricity Generation
- Regional Resources
 - Wind, biomass, solar
 - Geologic storage
- Transmission between regions
- Energy use by region
 - Industrial, commercial, residential, transport
- Rest of the economy

MERGE for International Analysis

EPRI Staff and Members Evaluate Model Results

New Insights

- Regional implications of environmental and energy policies
- Value of technology
- Wind integration
- Transportation
 electrification
- Energy efficiency, electrification, and smart grid

New Wind Resource Data: Capturing the Variability of Wind

• AWS Truepower 200m resolution wind data

- Based on actual hourly 1997-2008 meteorology
- Provides simulated output for typical turbine (80m height, 1.5 MW)

- Identified 5300+ "utility-scale" sites
 - Exclusion areas
 - 100 MW site minimum
 - Distance to grid
 - Terrain/wake effects

vind.

.com |

National Wind Energy Potential* (excluding delivery costs)

*EPRI – AWS TruePower National Wind Energy Supply Curve

Wind Energy Potential <u>by Region</u> (excluding delivery costs)

Uneven Regional Distribution.... ~50% of Economic Resource in NW Central

Focus on NW-Central Region

- State hourly load data for 2007 from Energy Velocity
- Hourly loads and wind output synchronized so driven by same 2007 meteorology
- Add 50 GW new installed wind capacity within region
- Rank sites by capacity factor, build best sites first

New Model Approach Captures Wind Variability

Anti-correlation of Wind with Load Creates Ramping Issues

Wind Variability Impacts Thermal Fleet

What Happens When Wind Exceeds Load?

National Wind Energy Potential* (including delivery costs)

*EPRI – AWS TruePower National Wind Energy Supply Curves

Taking Prism 2.0 for a "Test Drive"

- Details and timing of potential federal limits on GHG emissions remain unclear
- Without specifying a particular proposal or cap, we can simulate an aggressive policy with a rising CO₂ price:

Results are *illustrative*, not polished scenarios!!!

Prism 2.0 "Test Drive" Generation Mix

MERGE vs. Prism 2.0 "Test Drive"

Electric sector module only

Prism 2.0 "Test Drive" Insights... 2010-2025

Prism 2.0 "Test Drive" Insights... Post-2025

 AEO 2010 Reference Case Energy Efficiency* Solar Geothermal **Biomass** Wind Hydro+ Nuclear (New) Nuclear (Existing) Gas-CCS Gas Coal-CCS (New) CCS Retrofit Coal

* Includes new programs, technology, and behavioral price response

TWh

Prism 2.0 "Test Drive" Insights... Regional Generation Mix

Prism 2.0 "Test Drive" Insights... What if no new inter-region transmission?

Less wind, more regionally distributed

Prism 2.0 "Test Drive" Insights... What if no new nuclear or CCS?

* Includes new programs, technology, and behavioral price response

© 2011 Electric Power Research Institute, Inc. All rights reserved.

What We Are Seeing ... Initial Insights

- Near term response to high CO₂ price likely dominated by renewables, efficiency and natural gas
 - Coal retirements offset by new renewables, efficiency
 - Natural gas fills any remaining demand
- Wind integration costs significant at high penetration
 - New balancing resources required (transmission, storage, smart grid, PHEVs)
 - Ramping impacts on thermal fleet \rightarrow increased O&M
- Longer term, nuclear and CCS will be important

-Without them, rely on more costly renewables, efficiency

Prism 2.0 Project Status

Together...Shaping the Future of Electricity

